Polscy naukowcy pracują nad udoskonaleniem badania EKG z pomocą sztucznej inteligencji

KM/PAP
opublikowano: 07-08-2023, 17:07

Naukowcy z Politechniki Warszawskiej złożyli wniosek o patent na rozwiązanie, które polega na udoskonaleniu badania EKG z pomocą sztucznej inteligencji. - Nasz sposób obrazowania wyniku EKG pokazuje rzeczywisty stan mięśnia, co pozwoli lekarzowi szybciej i skutecznej diagnozować zawały i arytmie serca – wyjaśnia dr Teodor Buchner, fizyk z PW.

Ten artykuł czytasz w ramach płatnej subskrypcji. Twoja prenumerata jest aktywna
EKG to badanie diagnostyczne wykorzystywane do rozpoznawania chorób serca. Polega ono na rejestracji elektrycznej czynności mięśnia sercowego z powierzchni klatki piersiowej. Wynik pomiaru ma postać różnicy potencjałów (napięć) pomiędzy dwiema elektrodami, co zostaje przedstawione w formie graficznej, na specjalnym papierze milimetrowym bądź na ekranie monitora.
EKG to badanie diagnostyczne wykorzystywane do rozpoznawania chorób serca. Polega ono na rejestracji elektrycznej czynności mięśnia sercowego z powierzchni klatki piersiowej. Wynik pomiaru ma postać różnicy potencjałów (napięć) pomiędzy dwiema elektrodami, co zostaje przedstawione w formie graficznej, na specjalnym papierze milimetrowym bądź na ekranie monitora.
iStock

Elektrokardiografia (EKG) jest jednym z najtrudniejszych do analizy badań w diagnostyce medycznej, zaś kardiolodzy od lat zmagają się z problemami w ocenie stanu pacjentów na podstawie informacji, jakie uzyskują dzięki EKG.

Zawały i arytmie niewidoczne w EKG

Sporej części zawałów badanie EKG nawet nie jest w stanie zarejestrować, podczas gdy reagowanie na bieżąco jest krytycznie ważne, żeby uratować życie człowieka. "Niewidoczny" w EKG zawał można wykryć dopiero, kiedy pacjent dotrze do szpitala, gdzie zostaną wykonane dodatkowe badania. Skrócenie czasu potrzebnego na postawienie diagnozy i podjęcie leczenia pomogłoby obniżyć śmiertelność.

Problemem w kardiologii jest również lokalizacja zaburzenia. Nie zawsze wiadomo, czy zdarzenie - takie jak źródło arytmii czy zawał - jest zlokalizowane w komorze serca lewej, w prawej, czy może w przegrodzie międzykomorowej. Na podstawie powierzchniowego EKG nadal bardzo ciężko jest powiedzieć, gdzie dokładnie w mięśniu coś się wydarzyło - tłumaczy prof. Rafał Baranowski z Narodowego Centrum Kardiologii w Aninie, jeden z klinicystów biorących udział w badaniach.

– Wcześniej nasz zespół zajmował się sercem od strony “systemu sterowania”: rytmu serca i tego, jak on się zmienia – więc już trochę o tym wiedzieliśmy. Tym, co dzieje się z samym mięśniem, zajmowaliśmy się natomiast z elektrofizjologami, takimi jak niezapomniany profesor Franciszek Walczak, dzięki czemu mieliśmy pojęcie o aktywności elektrycznej serca. Natomiast tym, jak interpretować EKG, i dlaczego ono jest opisywane tak, a nie inaczej, zaczęliśmy interesować się niedawno – powiedział w rozmowie z PAP dr Teodor Buchner, fizyk z Politechniki Warszawskiej.

PRZECZYTAJ TAKŻE: Prof. Mateusz Hołda: serce nadal skrywa przed nami sporo tajemnic, co skłania do dalszych badań

Jak sztuczna inteligencja pomaga w interpretacji wyniku EKG

Zespół dra Buchnera złożył wniosek o patent na rozwiązanie, które polega na udoskonaleniu badania EKG z pomocą sztucznej inteligencji.

– Sformułowaliśmy teorię, która w prosty sposób wiąże informację z wyniku badania EKG z informacją o stanie mięśnia. Uważamy, że nasz sposób obrazowania wyniku EKG pokazuje rzeczywisty stan mięśnia. Pokazujemy, skąd fizycznie wziął się sygnał widoczny w EKG, i jak go można zinterpretować. Do tej analizy zaprzęgnięta jest sieć neuronowa. Wpisujemy się więc w nurt poszukiwania nowych narzędzi przy użyciu możliwości, jakie daje sztuczna inteligencja – wyjaśnia dr Buchner.

Kardiologia
Ekspercki newsletter przygotowywany we współpracy z kardiologami
ZAPISZ MNIE
×
Kardiologia
Wysyłany raz w miesiącu
Ekspercki newsletter przygotowywany we współpracy z kardiologami
ZAPISZ MNIE
Administratorem Twoich danych jest Bonnier Healthcare Polska.

Tłumaczy też, jakie informacje przetwarza sztuczna inteligencja: - Ona przetwarza sygnał EKG i “wypuszcza” informację, która ma bezpośrednie odniesienie do stanu mięśnia. Obecnie trzeba zgadywać z wykresu EKG, że jakiś załamek na wykresie ma 2 mm, a inny ma 3 mm - i co to właściwie oznacza. Istnieją choroby tak trudne do rozpoznania, że do opisu EKG zdefiniowano już ponad 70 parametrów i dalej nie ma zgody, które z nich są najlepsze. Dzięki naszemu rozwiązaniu sztuczna inteligencja przekłada ten abstrakcyjny obraz na obraz łatwo zrozumiały dla lekarza.

Pytany o możliwość pomyłki ze strony sztucznej inteligencji i ryzyka wprowadzenia lekarza w błąd, odpowiada: "my - jako inżynierowie - jesteśmy bardzo krytyczni w odniesieniu do sztucznej inteligencji, bo wiemy, że żaden algorytm nie jest inteligentniejszy od człowieka, który go napisał. I że sztuczna inteligencja dziedziczy po nas wszystkie ograniczenia. My możemy jej zlecić, żeby zobaczyła coś, czego my nie zobaczyliśmy, ale to i tak ciągle odbywa się w “piaskownicy intelektualnej”, którą definiuje człowiek, a algorytm tylko wykonuje jego polecenia - konkluduje Buchner.

Czy w takim razie sztuczna inteligencja jest w stanie znaleźć połączenia pomiędzy tym, co widać na wykresie - a stanem mięśnia sercowego, których lekarz nie widzi?

– My mówimy: przekop mi tę piaskownicę i wyjmij wszystkie kamyczki. Ale to my wytyczyliśmy tę piaskownicę - czyli dostarczamy danych. I znamy każdy z tych kamieni, bo to my określamy język, w którym opisane są rozwiązania. Sztuczna inteligencja lepiej skaluje nasze wysiłki. Ona zrobi to bardzo szybko – przekonuje Buchner.

PRZECZYTAJ TAKŻE: Wkrótce sztuczna inteligencja odciąży w pracy radiologów

Narzędzie edukacyjne dla kardiologów, które przyspieszy postawienie diagnozy

Skoro teraz algorytm połączy informację o mięśniu z tym, co pokaże wynik badania EKG - można przypuszczać, że osłabi to czujność lekarza podczas interpretacji wyników.

Aby uniknąć ryzyka osłabienia czujności kardiologa, zespół Buchnera przygotował narzędzie edukacyjne.

Stworzyliśmy narzędzie edukacyjne, które pokazuje, z czego fizycznie - w związku z pracą serca - wynika to, co widzi lekarz na wykresie EKG. Dzięki temu narzędziu lekarz może sobie wyrobić lepszą intuicję, bo do tej pory bazował na wyglądzie krzywej EKG. To tak, jakby próbować odczytać wzór na pończosze, kiedy ona jest zwinięta w kulkę – tłumaczy dr Buchner. I podkreśla, że lekarze mają świetne intuicje, dlatego warto dostarczać im narzędzi, które rozwijają ich wyobraźnię, do analizy trudnych przypadków.

– Skończy się to szybszym i bardziej precyzyjnym postawieniem diagnozy, więc może się zmienić ścieżka kliniczna. Może być tak, że pacjent będzie miał zastosowane leczenie już w karetce. Bo lekarz będzie miał większy stopień pewności, co się z chorym dzieje – przekonuje Buchner.

Potrzebne zintegrowane bazy wyników badania EKG, którymi będzie karmiona sztuczna inteligencja

Pytany o bazy danych, którymi karmiona jest sztuczna inteligencja, naukowiec wyraził nadzieję, że istniejące już na świecie bazy danych wyników EKG pacjentów będą szeroko udostępniane.

– Bazy są teraz rozproszone, a my wierzymy, że będą integrowane dla dobra ludzkości. Hindusi już teraz mają gigantyczną bazę miliona wyników badań EKG - mówi.

PRZECZYTAJ TAKŻE: Arytmie u dzieci przeważnie są wykrywane przypadkowo

Sztuczna inteligencja może pomóc w przewidywaniu choroby Parkinsona

Najważniejsze dzisiaj
× Strona korzysta z plików cookies w celu realizacji usług i zgodnie z Polityką Plików Cookies. Możesz określić warunki przechowywania lub dostępu do plików cookies w Twojej przeglądarce.